Photocatalytic Activity for Water Decomposition of RuO_2 -Loaded $SrIn_2O_4$ with d¹⁰ Configuration

Junya Sato, Nobuo Saito, Hiroshi Nishiyama, and Yasunobu Inoue* Department of Chemistry, Nagaoka University of Technology, Nagaoka 940-2188

(Received May 22, 2001; CL-010482)

A p-block metal oxide of $SrIn_2O_4$ with d^{10} configuration was found to be a new photocatalyst for the overall splitting of water when combined with RuO₂.

Most of the metal oxide photocatalysts developed in a past decade for the decomposition of water to H_2 and O_2 have been NiO- or RuO₂-loaded titanates, niobates, zirconates and tantalates. The representative titanates were $A_2La_2Ti_3O_{10}$ (A = K, Rb, Cs),^{1,2} $A_2Ti_6O_{13}$ (A = Na, K, Rb)^{3,4} and BaTi₄O₉,^{5,6} and the niobates were $A_4Nb_6O_{17}$ (A = K, Rb)^{7,8} and Sr₂Nb₂O₇.⁹ ZrO₂¹⁰ was found to be active, and, recently, ATaO₃ (A = Na, K),^{11,12} MTa₂O₆ (M = Mg, Ca, Sr ,Ba)^{13,14} and Sr₂Ta₂O₇⁹ were shown to have the ability for water decomposition. The feature of these metal oxide photocatalysts is to be composed of octahedrally coordinated d⁰ transition metal ions such as Ti⁴⁺, Zr⁴⁺, Nb⁵⁺, and Ta⁵⁺. To our knowledge, no stable metal oxides other than d⁰ transition metal oxides have been reported. In an attempt to establish a new kind of the photocatalysts, we have paid attention to p-block metal oxides with d¹⁰ configuration and found that SrIn₂O₄ has the capability of decomposing water when combined with RuO₂.

In the synthesis of SrIn₂O₄ powder, strontium nitrate (Wako Chemicals, 99.9% pure) and indium nitrate (Nacalai Tesque, Inc, EP Grade) in a 1:2 molar ratio were dissolved in water and then ethanol solutions, and oxalic acid ethanol solution was added to the solution. The coprecipitate thus prepared was aged at 353 K, dried at 393 K and calcined in air for 16 h at different temperatures between 1073 and 1473 K. The formation of SrIn2O4 was confirmed based on the X-ray diffraction peak patterns reported previously.¹⁵ For RuO₂ loading, SrIn₂O₄ was impregnated up to incipient wetness with ruthenium carbonyl complex, Ru₃(CO)₁₂, in THF solution, dried at 357 K and calcined in air at 673 K. The photocatalytic reaction was carried out in a gas circulation apparatus equipped with a quartz reaction cell which was described elsewhere.³⁻⁶ Briefly, about 250 mg of the photocatalyst was placed in ca. 20 mL distilled and ion-exchanged water and stirred by bubbling with Ar gas circulation. A dispersed photocatalyst in the reaction cell was irradiated by Xe lamplight at 400 W. The gas phase products were analyzed by an online gas chromatograph.

Figure 1 shows the production of H_2 and O_2 from water on a 1 wt% $RuO_2/SrIn_2O_4$ photocatalyst under UV irradiation. From the initial stage, both H_2 and O_2 increased nearly in proportion to irradiation time. The gas phase products were evacuated, and the reaction was repeated under the same conditions. In the second run, the evolution of H_2 and O_2 occurred in a manner similar to that in the first run, indicating little deterioration of photocatalytic activity. The photocatalytic activity of RuO_2 -loaded $SrIn_2O_4$ was 1/2-1/8 that of the active RuO_2 loaded Ti-based photocatalysts such as $RuO_2/A_2Ti_6O_{13}$ (A= Na,

Figure 1. Evolution of H_2 and O_2 from water on 1 wt% RuO₂-loaded SrIn₂O₄ under UV irradiation. SrIn₂O₄ was prepared by calcination at 1273 K.

K, Rb) and RuO₂/BaTi₄O₉ investigated in our previous studies.^{5,16} The results clearly indicate that $SrIn_2O_4$ consisting of In^{3+} with d¹⁰ configuration makes a good photocatalyst for water decomposition when combined with RuO₂.

Figure 2 shows the UV diffuse reflectance spectra of $SrIn_2O_4$ prepared at different calcination temperatures. Light

Figure 2. UV reflectance spectra of $SrIn_2O_4$ subjected to different calcination temperatures.

absorption occurred at around 450 nm, increased gradually and steeply at a wavelength shorter than 350 nm, and reached a maximum at around 300 nm. The absorption spectrum of a sample prepared at 1273 K was nearly the same as that at 1073 K, whereas the threshold wavelength shifted slightly toward longer wavelength when calcined at 1473 K.

The influence of calcination temperature of SrIn₂O₄ on the photocatalytic activity of RuO₂/SrIn₂O₄ is shown in Figure 3. The activity was low for SrIn₂O₄ calcined at 1073 K, increased with increasing calcination temperature, passed through a maximum at 1273 K, and decreased. In the X ray diffraction patterns, the main peaks of $2\theta = 31.4^{\circ}$ and 32.8° , assigned respectively to the reflection from the (320) and (121) planes, became narrower and larger with increasing temperatures up to 1473 K. This indicates that the crystallization of SrIn₂O₄ progressed with increasing temperatures above 1173 K. The SEM observation showed that the average particle size was 0.21-0.37 µm for calcination below 1273 K and increased sharply to 1.0 µm for calcination between 1273 and 1373 K. Based on the results, an increase in the photocatalytic activity with calcination from 1073 to 1273 K is associated with increasing crystallinity of $SrIn_2O_4$, whereas a decrease in the photocatalytic activity above 1273 K appears to be related to a decrease in the surface area of $SrIn_2O_4$. Decreases in surface area cause not only reduction of the concentration of photocatalytic active sites but also changes in the dispersed states of RuO₂. A previous study of the effects of RuO₂ dispersion on the photocatalytic activity of RuO₂loaded M₂Ti₆O₁₃(M=Na, K, Rb) showed that the growth of RuO₂ to large particles resulted in significant decreases in the photocatalytic activity.¹⁶ The small surface area of SrIn₂O₄ facilitates the agglomeration and growth of RuO₂ particles, leading to lowering of the photocatalytic activity.

In the correlation between photocatalytic activity and the local structure of metal oxides, it is interesting to note a similar-

Figure 3. Changes in photocatalytic activity of 1 wt% RuO₂-loaded SrIn₂O₄ with calcination temperature of SrIn₂O₄. \blacklozenge :H₂; \diamondsuit :O₂.

ity between SrIn₂O₄ and a representative titanate of BaTi₄O₉ with d⁰ configuration. SrIn₂O₄ belongs to an orthorhombic crystal structure with a unit cell of a = 0.9809, b = 1.1449 and c = 0.3265 nm¹⁵: the structural feature is the presence of a pentagonal-prism-like tunnel where there are two distorted InO₆ octahedra. In a highly active RuO₂-loaded BaTi₄O₉ photocatalyst, BaTi₄O₉ has two kinds of the distorted TiO₆ octahedra in the pentagonal prism tunnel structure,¹⁷ and it is proposed that internal electric fields (dipole moments) caused by the distortion of the octahedra are responsible for high efficiency of photoexcited charge formation and hence for good performance in photocatalytic water decomposition.^{18,19} Analogous to this, it appears that the presence of the pentagonal-prism tunnel structure of SrIn₂O₄ is associated with the photocatalytic activity of RuO₂/SrIn₂O₄.

In conclusion, the present findings predict that a p-block metal oxide with d^{10} configuration will be a new group of photocatalysts for the overall splitting of water.

This work was supported by CREST of JST.

References

- T. Takata, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo, and K. Domen, J. Photochem. Photobiol. A: Chem., 106, 45 (1997).
- 2 T. Takata, Y. Furumi, K. Shinohara, A. Tanaka, M. Hara, J. N.Kondo, and K. Domen, *Chem. Mater.*, **9**, 1063 (1997).
- 3 Y. Inoue, T. Kubokawa, and K. Sato, J. Phys. Chem., **95**, 4059 (1991).
- 4 S. Ogura, M. Kohno, K. Sato, and Y. Inoue, *Appl. Surf. Sci.*, **121/122**, 521 (1997).
- 5 Y. Inoue, Y. Asai, and K. Sato, J. Chem. Soc., Faraday Trans., **90**, 797 (1994).
- 6 M. Kohno, T. Kaneko, S. Ogura, K. Sato, and Y. Inoue, *J. Chem. Soc., Faraday Trans.*, **94**, 89 (1998).
- 7 A. Kudo, A. Tanaka, K. Domen, K. Maruya, K. Aika, and T. Onishi, J. Catal., **111**, 67 (1988).
- 8 K. Sayama, A. Tanaka, K. Domen, K. Maruya, and T. Onishi, *J. Catal.*, **124**, 541 (1990).
- 9 A. Kudo, H. Kato, and S. Nakagawa, J. Phys. Chem., B, 104, 571 (2000).
- 10 K. Sayama, and H. Arakawa, J. Phys. Chem., **97**, 531 (1993).
- 11 H. Kato and A. Kudo, Catal. Lett., 58, 153 (1999).
- 12 T. Ishihara, H. Nishiguchi, K. Fukamachi, and Y. Takita, J. *Phys. Chem.*, B, **103**, 1 (1999).
- 13 H. Kato and A. Kudo, Chem. Phys. Lett., 295, 487 (1998).
- 14 H. Kato and A. Kudo, Chem. Lett., 1207 (1999).
- 15 V. R. Von Schenck and Hk. Muller-Buschbaum, Anorg. Allg. Chem., 398, 24 (1973).
- 16 S. Ogura, M. Kohno, K. Sato, and Y. Inoue, *Phys. Chem. Chem. Phys.*, **1** 179 (1999).
- 17 D. H. Templeton and C. H. Dauben, J. Chem. Phys., 32, 1515 (1960).
- 18 M. Kohno, S. Ogura, K. Sato, and Y. Inoue, *Chem. Phys. Lett.*, 267, 72 (1997).
- 19 M. Kohno, S. Ogura, K. Sato, and Y. Inoue, *J. Chem. Soc., Faraday Trans.*, **93**, 2433 (1997).